Exercise 11

Find the general solution for the following initial value problems:

$$
u^{\prime \prime}-9 u^{\prime}=0, \quad u(0)=3, u^{\prime}(0)=9
$$

Solution

This is a homogeneous linear ODE with constant coefficients, so the solution is of the form, $u=e^{r x}$.

$$
u=e^{r x} \quad \rightarrow \quad u^{\prime}=r e^{r x} \quad \rightarrow \quad u^{\prime \prime}=r^{2} e^{r x}
$$

Substituting these into the equation gives us

$$
r^{2} e^{r x}-9 r e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-9 r=0
$$

Factor the left side.

$$
r(r-9)=0
$$

$r=0$ or $r=9$, so the general solution is

$$
u(x)=C_{1} e^{0 x}+C_{2} e^{9 x}=C_{1}+C_{2} e^{9 x} .
$$

Because we have two initial conditions, we can determine C_{1} and C_{2}.

$$
\begin{gathered}
u^{\prime}(x)=9 C_{2} e^{9 x} \\
u(0)=C_{1}+C_{2}=3 \\
u^{\prime}(0)=9 C_{2}=9
\end{gathered}
$$

Solving this system of equations gives $C_{1}=2$ and $C_{2}=1$. Therefore,

$$
u(x)=2+e^{9 x} .
$$

We can check that this is the solution. The first and second derivatives are

$$
\begin{aligned}
u^{\prime} & =9 e^{9 x} \\
u^{\prime \prime} & =81 e^{9 x} .
\end{aligned}
$$

Hence,

$$
u^{\prime \prime}-9 u^{\prime}=81 e^{9 x}-9\left(9 e^{9 x}\right)=0,
$$

which means this is the correct solution.

